Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur Spine J ; 32(6): 2140-2148, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060466

RESUMO

Due to the diversity of patient characteristics, therapeutic approaches, and radiological findings, it can be challenging to predict outcomes based on neurological consequences accurately within cervical spinal cord injury (SCI) entities and based on machine learning (ML) technique. Accurate neurological outcomes prediction in the patients suffering with cervical spinal cord injury is challenging due to heterogeneity existing in patient characteristics and treatment strategies. Machine learning algorithms are proven technology for achieving greater prediction outcomes. Thus, the research employed machine learning model through extreme gradient boosting (XGBoost) for attaining superior accuracy and reliability followed with other MI algorithms for predicting the neurological outcomes. Besides, it generated a model of a data-driven approach with extreme gradient boosting to enhance fault detection techniques (XGBoost) efficiency rate. To forecast improvements within functionalities of neurological systems, the status has been monitored through motor position (ASIA [American Spinal Injury Association] Impairment Scale [AIS] D and E) followed by the method of prediction employing XGBoost, combined with decision tree for regression logistics. Thus, with the proposed XGBoost approach, the enhanced accuracy in reaching the outcome is 81.1%, and from other models such as decision tree (80%) and logistic regression (82%), in predicting outcomes of neurological improvements within cervical SCI patients. Considering the AUC, the XGBoost and decision tree valued with 0.867 and 0.787, whereas logistic regression showed 0.877. Therefore, the application of XGBoost for accurate prediction and decision-making in the categorization of pre-treatment in patients with cervical SCI has reached better development with this study.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Humanos , Medula Cervical/diagnóstico por imagem , Medula Cervical/lesões , Reprodutibilidade dos Testes , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/terapia , Prognóstico , Aprendizado de Máquina
3.
Sci Rep ; 11(1): 15825, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349182

RESUMO

Recent predictions on climate change indicate that high temperature episodes are expected to impact rice production and productivity worldwide. The present investigation was undertaken to assess the yield stability of 72 rice hybrids and their parental lines across three temperature regimes over two consecutive dry seasons using the additive main effect and multiplicative interaction (AMMI), genotype and genotype × environment interaction (GGE) stability model analysis. The combined ANOVA revealed that genotype × environment interaction (GEI) were significant due to the linear component for most of the traits studied. The AMMI and GGE biplot explained 57.2% and 69% of the observed genotypic variation for grain yield, respectively. Spikelet fertility was the most affected yield contributing trait and in contrast, plant height and tiller numbers were the least affected traits. In case of spikelet fertility, grain yield and other yield contributing traits, male parent contributed towards heat tolerance of the hybrids compared to the female parent. The parental lines G74 (IR58025B), G83 (IR40750R), G85 (C20R) and hybrids [G21 (IR58025A × KMR3); G3 (APMS6A × KMR3); G57 (IR68897A × KMR3) and G41 (IR79156A × RPHR1005)] were the most stable across the environments for grain yield. They can be considered as potential genotypes for cultivation under high temperature stress after evaluating under multi location trials.


Assuntos
Adaptação Fisiológica , Irrigação Agrícola/métodos , Interação Gene-Ambiente , Oryza/crescimento & desenvolvimento , Temperatura , Genótipo , Oryza/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...